濠电姷鏁告慨鐑姐€傞挊澹╋綁宕ㄩ弶鎴狅紱闂佽宕樺▔娑氭閵堝憘鏃堟晲閸涱厽娈查梺绋款儏椤戝寮婚敐鍛傜喎鈻庨幆褎顔勯柡澶嗘櫆缁诲牆顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳碍淇婇悙顏勨偓鏍垂閻㈢ǹ绠犻柟鐗堟緲缁犳煡鏌曡箛瀣偓鏇犵不閿濆鐓ラ柡鍥殔娴滈箖姊洪挊澶婃殶闁哥姵鐗犲濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳氨绱撻崒娆掑厡缂侇噮鍨堕妴鍐川鐎涙ê浠奸梺缁樺灱婵倝宕戦妸褏纾奸悗锝庡亜椤曟粓鏌f惔顔煎⒋婵﹨娅i幑鍕Ω閵夛妇褰氶梻浣烘嚀閸ゆ牠骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊閵娧呭骄闂佸壊鍋呴幆濠傗槈閵忕姷顦板銈嗙墤閸嬫捇鏌涢妷顔煎缂佲偓閸愵喗鐓犵痪鏉垮船婢ь垱绻涢崼婵勫仮婵﹨娅i幑鍕Ω閵夛妇褰氶梻浣烘嚀閸ゆ牠骞忛敓锟� 缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闂佽鍨伴ˇ鐢稿箠閺嶎厼鐓涢柛灞捐壘缁ㄣ儲绻濋悽闈涒枅婵炰匠鍥ㄥ亱闊洦娲滈惌鍡椻攽閻樺弶澶勯柣鎾卞劦閺岋綁寮撮悙娴嬪亾閸︻厸鍋撳鐐 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛澹曢悷鎵虫斀闁绘ê鐤囨竟妯肩磼閻橀潧鈻堥柡宀€鍠栭獮鍡氼槾闁圭晫濮电换娑㈠川椤栨埃鏋呴梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟� 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鎮规潪鎵Э婵炴垯鍨圭粻锝夋煟閹邦厼顥嬬紒鐘冲哺濮婃椽骞栭悙鎻掑Ф闂佸憡鎸诲畝绋跨暦閺囥垹绠荤紓浣贯缚閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姴缍婇弻宥夊传閸曨剙娅i梺娲诲幗椤ㄥ﹪寮诲鍫闂佸憡鎸婚惄顖炲春閳ь剚銇勯幒鎴濇灓婵炲吋鍔欓弻鐔哄枈閸楃偘鍠婂Δ鐘靛仜缁绘﹢寮幘缁樻櫢闁跨噦鎷� 闂傚倸鍊搁崐宄懊归崶褏鏆﹂柣銏⑶圭粣妤呮煙閹殿喖顣奸柛瀣剁節閺屾洘寰勯崼婵嗗濠电偞鍨惰彜闁衡偓娴犲鍊甸柨婵嗗暙婵$兘鏌涚€n偅宕岀€规洘甯¢幃娆戔偓娑櫳戦鐔兼⒒娴h姤纭堕柛锝忕畵楠炲繘鏁撻敓锟�

濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姴缍婇弻宥夊传閸曨剙娅i梺娲诲幗椤ㄥ﹪寮诲鍫闂佸憡鎸婚惄顖炲春閳ь剚銇勯幒鎴濇灓婵炲吋鍔欓弻鐔煎川婵犲啫鈧劗鈧娲橀崝娆忕暦瑜版帩鏁嬮柛娑卞幗椤撳潡姊绘担绋款棌闁稿鎳庣叅闁哄稁鍋嗘稉宥嗘叏濮楀棗鍔掔憸鐗堝笚閺呮煡鏌涘☉鍗炲箺婵炲牊鐓″鐑樼附閸涘﹥閿紓鍌氱Т閿曨亜顕g拠娴嬫闁靛繒濮烽惈鍕⒑缁嬫寧婀扮痪鏉跨Ч閹ɑ绗熼埀顒€顫忛搹鍦<婵☆垳鈷堥弳锟犳⒑缁嬪灝顒㈠┑鐐诧躬楠炲啯銈i崘鈺婃濠电偞鍨兼ご鎼佸磽閻㈠憡鈷戦柤娴嬫暁瑜版帗鍊舵慨妯挎硾濮规煡鏌eΟ鑲╁笡闁抽攱鍨块弻娑樷攽閸℃浼€闂佽绻樻禍鍫曞蓟濞戙垺鍋愮€规洖娲ら埅褰掓⒑娴兼瑧鍒伴柛銏$叀閵堫亝瀵奸弶鎴﹀敹闂佺粯鏌ㄩ幉锟狀敂閻斿吋鈷掑ù锝堝Г绾爼鏌涢敐蹇曠暤妤犵偛绻橀弫鎾绘晸閿燂拷

缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻堥弻鐔风暋閻楀牊鎷遍梺鐟板暱閻倸顫忕紒妯诲闁告稑锕ラ崕鎾绘⒑濞茶澧柕鍫⑶归悾閿嬪閺夋垵鍞ㄩ悷婊勭矒瀹曠敻寮撮姀锛勫幈婵犵數濮寸€氼剟寮搁弮鍫熺厽闁靛牆鍊告禍楣冩⒒閸屾瑧顦﹂柟纰卞亜鐓ら柕濞炬櫅缁愭鏌熼崜褏甯涢柛瀣耿閺屾洘寰勯崱妯荤彆闂佹娊鏀遍崹鍧楀蓟閻旇櫣鐭欓柛褎顨忛埀顒侇殜閺屾盯鎮╅搹顐ゎ槹闂佸搫鐬奸崰鏍х暦濞嗘挸围闁糕剝顨忔导锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閼碱剦妲烽梻浣告惈濞层垽宕归崷顓犱笉闁绘ḿ绮悡娆撴煛婢跺﹦浠㈢紒銊ㄥ吹缁辨挸顓奸崱娆忊拰闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷 濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倸鈹戦崒婧撳綊寮伴妷鈺傜厸鐎广儱楠搁獮妤呮煕鐎n亶鍎愮紒缁樼箖缁绘繈宕掑⿰鍐f嫪缂傚倸鍊哥粔鐢告偋閻樿钃熼柕濞炬櫆閸嬪棝鏌涚仦鍓р槈妞ゅ骏鎷� 濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴濐潟閳ь剙鍊圭粋鎺斺偓锝庝簽閸旓箑顪冮妶鍡楃瑨闁哥噥鍨堕幃鐢割敂閸″繐浜鹃柣鐔哄閸熺偟绱掔拠鎻掓殻濠碉紕鏁诲畷鐔碱敍閿濆棙娅囨俊鐐€栫敮濠勭矆娓氣偓椤㈡棃鏁撻敓锟� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€归崕鎴犳喐閻楀牆绗掗柛銊ュ€搁湁闁绘ǹ灏欓幊浣割熆閼搁潧濮囩紒鐘侯嚙闇夐柛蹇氬亹閹冲懐绱掔€n亞绠绘慨濠呮閹瑰嫰濡搁妷锔惧綒闂備胶鎳撻崵鏍箯閿燂拷 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愯弓鐢婚梻鍌欑贰閸撴瑧绮旂€靛摜涓嶆い鏍仦閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞顨呴オ浼村礋椤愩垻浜栭梻浣告贡閾忓酣宕伴弽顐や笉妞ゆ牜鍋為悡銉╂煟閺囩偛鈧湱鈧熬鎷� 濠电姷鏁告慨鐢割敊閺嶎厼绐楁俊銈傚亾闁伙絿鍏樺畷褰掝敋閸涱厽鍊梻浣虹《閸撴繈銆冭箛鏂款嚤闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇楀亾妞ゎ亜鍟撮獮鎰償閿濆孩閿ら梻浣虹帛閸ㄧ厧螞閸曨厾涓嶆い鏍仦閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀閸屻劎鎲告惔銊ョ畾闁哄倸绨遍崼顏堟煕椤愶絿绠樻い鏂挎濮婅櫣鎹勯妸銉︾彚闂佺懓鍤栭幏锟� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳碍绻濆▓鍨灍闁挎洦鍋嗙划濠氬箣閿曗偓閻撴繈鏌¢崘銊у闁告娅曢妵鍕敃椤愩垺鐏撶紓浣割儏缁绘ê顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊閵娧呭骄闂佸壊鍋掑鈧柣鎺戯攻缁绘盯宕卞Ο鍝勵潔闂佸憡鐟ョ换鎰亙闂佹寧绻傞幊搴ㄥ汲濞嗘垹妫柟顖嗗嫬浠撮梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟� 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋鏃€鍤嶉柛銉墻閺佸秹鏌i幇顓熺稇婵炲牞绲介—鍐Χ閸℃瑥顫х紓渚囧枛濞撮鍒掗崼銉ョ妞ゆ牗绋撻崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀閸屻劎鎲稿澶樻晪闁挎繂顦粈鍫澝归敐鍥ㄥ殌閹兼潙锕铏瑰寲閺囩偛鈷夌紓浣割儐閸ㄨ绔熼弴銏犻敜婵°倓鑳堕崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀閸屻劎鎲稿澶樻晪闁挎繂顦粈鍫澝归敐鍫燁仩闁绘挻鎹囧娲传閸曨厸鏋嗛梺鍛娗归崑鎰珶閺囩喓绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷 濠电姷鏁告慨鎾儉婢舵劕绾ч幖瀛樻尭娴滅偓淇婇妶鍕妽闁告瑥绻愰湁闁稿繐鍚嬬紞鎴犵磼閳ь剚寰勯幇顒傤啇闂佸湱鈷堥崢楣冨储濠婂懐纾界€广儱妫涙晶鐢告煛鐏炶濮傞柟顔哄€濆畷鎺戔槈濮楀棔绱� 缂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫰鍋婂〒濠氭煙閻戞﹩娈曢柛銈呭閺屾盯顢曢敐鍡欘槬缂佺偓鍎抽…鐑藉蓟閿濆妫橀柟绋垮閸庢捇姊洪幖鐐插缂佽鐗撳濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫宥夊礋椤撶姷鍘梻浣筋潐瀹曟﹢顢氳瀹曟帡濡歌閸犳劙鏌¢崘銊уⅱ鐎规挷绶氶弻娑㈠焺閸愵亖濮囬梺鍝勬噺閹倿寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇楀亾妞ゎ亜鍟村畷绋课旀担闀愮暗闂備礁澹婇崑渚€宕曟潏鈺冪幓婵°倓鑳剁粻楣冩煙鐎涙ḿ鎳冮柣蹇婃櫇閻ヮ亪骞嗚閻撳ジ鏌$仦璇插闁诡喓鍊濆畷鎺戔槈濮楀棔绱� 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊閵娧呭骄闂佸壊鍋掑鈧柣鎺戯攻閵囧嫯绠涢幘鎰佷槐闂佸搫顑嗛悧鐘诲蓟閿熺姴鐐婇柍杞拌閸嬫捇鏁愭径瀣珳婵犮垼娉涢鍡椻枍閵忋倖鈷戦悹鎭掑妼濞呮劙鏌熼崙銈嗗 缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧湱绱掔€n偓绱╂繛宸簻鍥撮梺绯曟閺呮粓顢欓弮鍫熲拺鐟滅増甯楅敍鐔虹磼鐠佸湱绡€鐎殿噮鍋呯换婵嬪炊閵娧冨汲闂備胶绮ú鏍磹閸︻厸鍋撳鐐 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌熺紒銏犳灍闁哄懏绻堥弻鏇㈠醇濠垫劖鈻撻梺杞扮鐎氫即寮诲☉銏╂晝妞ゆ帒鍊昏摫闂備焦瀵ч崘濠氬箯閿燂拷 闂傚倸鍊峰ù鍥敋瑜嶉湁闁绘垼妫勭壕濠氭煥濠靛棭妲哥痪鎹愵潐缁绘盯骞嬮悙鍐╁哺瀵悂寮介妸褏顔曢梺鐟扮摠閻熴儵鎮炲ú顏呯厸濞达絽澹婇崕鏃堟煛鐏炶濮傞柟顔哄€濆畷鎺戔槈濮楀棔绱� 闂傚倸鍊搁崐鎼佸磹閹间降鍋戦柟缁㈠枛绾惧鏌涢弴銊モ偓瀣洪鍕幯冾熆鐠虹尨鍔熼柡灞界墦濮婅櫣鎲撮崟顐㈠Ц濠碘槅鍋勭€氼喚鍒掗崼銉ラ唶闁靛濡囬崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷 濠电姷鏁告慨鐑姐€傞鐐潟闁哄洢鍨圭壕缁樼箾閹存瑥鐒洪柡浣稿閺屾盯濡烽鐓庮潻缂備焦鍔栭〃濠囧蓟閻旂厧绠查柟浼存涧濞堫參姊洪崨濠傜仼濠电偐鍋撻梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝夋交閼板潡寮堕崼娑樺濞寸姵纰嶆穱濠囨倷椤忓嫧鍋撹缁辨挸顫濈捄铏诡攨闂佺懓澧庨弲顐㈢暤娴g硶鏀介柣妯哄级婢跺嫰鏌¢崨顔藉€愰柡灞诲姂閹倝宕掑☉姗嗕紦 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋娆忕仾闁稿孩妫冮弻銈吤圭€n偅鐝旈梺鎼炲妽缁诲啴濡甸崟顖氬唨妞ゆ劦婢€缁爼姊洪挊澶婃殶闁哥姵鐗犲濠氭晲婢跺﹦鐫勯梺绋款儏閸熷灝锕㈤崡鐐╂瀻闁靛繈鍊栭崐鐑芥煕椤垵浜滈柡瀣灴閹鐛崹顔煎濡炪倧瀵岄崹鍫曞箚鐏炶娇鏃堝川椤旀儳寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�
 《实用免疫细胞与核酸》 > 第十八章 核酸分子杂交技术概述

第一节 核酸的分子结构

 

一、核酸的化学组成

组成核酸的元素有C、H、O、N、P等,其中N含量约为15%~16%,磷含量为9%~10%。由于核酸分子中的磷含量比较恒定,因此,核酸定量测定的经典方法,是以测定磷含量代表核酸量。

核酸经水解可得到多核苷核,因此核苷酸是核酸的基本单位,核酸就是由很多单核苷酸聚合形成的多核苷酸,核苷酸可被水解产生核苷和磷酸,核苷还可进一步水解,产生戊糖和含氮碱。因此,核酸是由含氮碱、戊糖及磷酸三种成分组成。

含氮碱(简称碱基):核酸中的含氮碱简称碱基,是嘌呤碱(purine)与嘧啶碱(pyrimidine)的衍生物。RNA和DNA含有的共同碱基成分是腺嘌呤(adenine,A)、鸟嘌呤(guanine,G)和胞嘧啶(cytosine, C)。二者的区别是RNA含有尿嘧啶(uracil,U),而DNA含有胸腺嘧啶(thymine,T)。嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。它们的结构如下:

有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。

嘌呤碱和嘧啶碱一般多不易溶于水,对250~280nm波长的紫外光有较强的吸收,但对260nm光波的吸收能力最大。由于碱基是核酸的基本组成成分,因此,所有的核酸(包括DNA和RNA)其共同特点是对260nm处的紫外光有最大的吸收值。

核酸分子中碱基的克分子数与磷的克原子数相等,所以可根据核酸溶液中的磷含量及紫外光的吸收值来测定核酸量。一般以每升核酸溶液中含1g磷原子为标准来计算核酸的吸光率,这称为克原子磷吸光率或克原子磷消光系数[ε(p)],ε(p)的计算式为:

ε(p)=A/Cl

A为吸光度(光密度),1为比色杯内径,通常为1.0cm;C为每升核酸溶液中磷的克原子数。

C= 每升溶液中磷重(wg)/30.98ε(p)=30.98A/wl

一般DNA的ε(p)=6000~8000;RNA为7000~10000

现将DNA和RNA的化学组成归纳如表18-1:

表18-1

 RNADNA
嘌呤碱腺嘌呤鸟嘌呤腺嘌呤鸟嘌呤
嘧啶碱胞嘧啶尿嘧啶胞嘧啶胸腺嘧啶(或5-甲基胞嘧啶)
戊糖核糖脱氧核糖
磷酸磷酸磷酸

 

二、核酸的一级结构

核酸又称多核苷酸,组成DNA的脱氧核糖核苷酸主要为四种,即dAMP、dGMP、dCMP及dTMP;组成RNA的核糖核苷酸主要有AMP、GMP、CMP及UMP四种。对两种核酸的组成可简写如下:

DNA=(碱基-脱氧核糖-磷酸)n;RNA=(碱基-核糖-磷酸)n

核酸中核苷酸的连接方式为:一个核苷核C-3’上羟基与下一个核苷核酸C-5’连接在磷酸羟基脱水缩合成酯键,称酯键称3’5’磷酸二酯键,若干个核苷酸间依3’5’磷酸二酯键连接成长链的大分子即为核酸。此长链称多核苷酸链,在链的一核苷酸,其C-5’连接的磷酸只一个酯键,称此核苷酸为链的5’磷酸未端或5’。链的另一端核苷酸上C-3’上羟基是自由的,对此核苷酸称为3’羟基末端或3’端,链内的核苷酸在C-5’上磷酸已形成二酯键,C-3’上羟基也已参与二酯键的形成,故称核苷酸残基。

核酸的一级结构乃指其核苷酸链中核苷酸的排列顺序,由于核酸中核苷酸彼此之间的差别乃在于碱基部分,故核酸的一级结构即指核酸分子中碱基的排列顺序。

对核酸一级结构的描述为:将5’磷酸末端书于左侧,中间部分为核苷酸残基,3’羟基末端书于右侧。通常用竖线表示核糖,碱基标于竖线上端,竖线间有含P的斜线,代表3’,5’磷酸二酯键。此表示法及简化式如下:

 

三、核酸的高级结构

核酸的多核苷酸链在次级键的基础上,还可形成更为复杂的二级及三级的高级结构。

(一)DNA

1.二级结构1953年Watson 及Crick在化学分析及X光衍射法观察DNA结构的基础上提出了著名的DNA双螺旋结构模型(double helix model)此结构是在核酸一级结构基础上形成的更为复杂的高级结构,即DNA的二级结构,结构如图18-1。

 DNA的双螺旋结构

图18-1 DNA的双螺旋结构

P:磷酸基;S:脱氧核糖;G:鸟嘌呤;

A:腺嘌呤;T:胸腺嘧啶C:胞嘧啶

DNA的二级结构即双螺旋结构,其内容可归纳为:

(1)DNA分子为二条多核苷酸链以一共同轴为中心,盘绕成右手双螺旋结构。螺旋直径2nm。螺旋盘绕形成链间的两种沟,即宽的大沟与狭窄的小沟。

(2)二条多核苷酸链的走向相反,通常取左侧链从上到下为5’→3’端,右则链从下向上为5’→3’端,这样二条链构成反平行排列的双螺旋。

(3)二条多核苷酸链借氢键而连系在一起。氢键乃一链碱基上-NH2的氢与另一链上碱基的氧或氮形成。碱基有二个氢键,G与C之间有三个氢键(图18-3)。这种相配关系称为碱基互补或碱基配对。配对的碱基处于同一平面,此平面与双螺旋的中心轴垂直,由于二条链中碱基互补,所以二链彼此又称为互补链。

(4)碱基对之间氢键的能量为3~7kcal/mol,由于氢键多,所以可维系DNA双链结构。另外碱基对彼此间距离为0.34nm,每一螺旋含10个碱基对,故螺距为3.4nm,相邻碱基对间彼此尚有范德瓦士(van der Waals)力作用(此力量为1~2kcal/mol,作用范围为0.5nm),能量虽弱但由于碱基对多,合力也就大。可见碱基对的氢键及碱基对之间的范德瓦士力是稳定DNA成双螺旋结构的主要能量。

上述DNA的双螺旋结构是溶液及活体中常见的形式,通称B型。当B型所处条件的湿度低于75%时,可转变为A型。A型的碱基对不垂直于双螺旋的轴、倾斜约20度,螺距降为2.8nm,每一螺旋含11个碱基对。B型与A型的水合程度不同,它们是DNA分子在天然条件下的两种基本形式。除A、B型外尚发出有C型双螺旋,似B型,螺距3.3nm,第一螺旋含9个碱基对。

DNA双螺旋结构阐明的量重要意义在于第一次提出了遗传信息是以DNA分子中核苷酸的排列顺序为储存方式,从而说明了天然遗传信息的复制过程。

2.三级结构已发现线粒体、叶绿体、细菌、质粒及一些病毒的DNA双螺旋分子尚可形成封闭环状,天然状态的环状DNA分子多扭曲成麻花状的超螺旋结构(superhelix),这些比螺旋更为复杂的结构即DNA分子的三级结构。

真核生理细胞核中的DNA具有一种超螺旋结构,即DNA双螺旋盘绕在组蛋白上形成核小体(nucleosome)。核小体是染色质(chromatin)的核心小粒,由有140个碱基对的双螺旋DNA缠绕于由组蛋白(H2A、H2B、H3及H4各二分子)组成的八聚体外面,这一DNA股由此形成直径为9nm的超螺旋1.75圈。此核小体又经60个碱基对的DNA双螺旋及组蛋白H1形成细丝(间隔区)与下一个核小体相连接。

核小体的DNA双螺旋为200个碱基对,长度应为0.34nm×200=68nm,但实际长度只10nm,说明DNA双螺旋链进一步螺旋化盘绕在组蛋白八聚体上,其长度压缩了7/8。每6个核小体又绕成一圈形成螺线管,外径为30nm,螺距为10nm。这样DNA分子长度被压缩了6/7。120个螺线管又盘绕成直径为400nm,高为30nm的超螺线管,DNA分子长度又被压缩了40/41,此超螺线管即染色体的单位纤维(unit fiber),长20~60nm。从单位纤维形成染色单体(chromatid),实际长度为2~10nm,DNA分子长度又被压缩了5/6~6/7。这样从许多核小体组成的串珠样纤维经多层次螺旋化结构到形成染色单体,DNA分子的长度已被压缩至近1/10000。

(二)RNA

RNA分子也是由核苷酸依3’,5’磷酸二酯键形成的多核苷酸链。RNA总是以单链的形式存在,也有5’磷末端及3’羟基末端。RNA单链的局部折叠成的某一片段的A及G分别与另一片段的U及C配对常形成发夹结构(hairpin structure)。在此结构内的碱基无需全部配对,而配对部位形成小的双螺旋区域,不能配对的碱基则连成小环从螺旋区中被圈出来。这种RNA单链局部小双螺旋结构即是RNA的二级结构。

 

四、基本组织

由于DNA分子中核苷酸序列分析以及一级结构与功能相关的研究,使得人们有可能进一步了解DNA一级结构与基因组织的关系。已经证实,自然界极大多数生物体遗传信息贮存在DNA的核苷酸排列顺序中,因此,基因是DNA的一个片段,只有少数病毒的遗传信息贮存在RNA分子中。DNA分子中不同区域有不同功能,有些区域可编码蛋白质(最终产物是蛋白质),有些区域可编码RNA(最终产物是tRNA和rRNA),有些序列则与调控有关。那么一个DNA分子能携带多少基因呢?如果以平均1000个碱基对可编码一个3kD的蛋白质计算,猴病毒(SV40)DNA分子量为3.0×105,有5000碱基对可编码5种蛋白质。人染色体DNA有2.3×109碱基对,可编码200万以上的基因,但实际上,最多可编码基因数为2~3万。这是由于真核细胞DNA分子除编码蛋白质和RNA等结构基因外,有相当部分DNA顺序属于非编码区,而原核细胞DNA由于分子较小,必需充分利用有限的核苷酸序列。各种生物体内DNA分子的大小见表18-2。

表18-2 各种生物体内DNA分子的大小

来源分子量碱基对数目长度
噬菌体фX174  0.6μm
腺病毒(SV401.6×10645001.5μm
鼠线粒体3.0×106140004.9μm
噬菌体λ9.5×1065000017μm
噬菌体T2或T43.3×10720000067μm
大肠杆菌染色体1.3×10845000001.5μm
人染色体3.0×1091250000004.1μm

1.真核生物的基因组织根据某一段核苷酸顺序在整个DNA分子中出现的频率不同可分为以下几种:

(1)单拷贝顺序(singlecopy sequence):在整个DNA分子中只出现一次或少数几次,主要是编码蛋白质的结构基因。除组蛋白、角蛋白和肌动蛋白以外,几乎所有的蛋白质基因都是单拷贝顺序,平均为1000碱基对。单拷贝基因在整个基因组织中所占比例最高。在人的细胞中约占DNA含量的一半。

(2)中等重复顺序(moderatelyrepetitive sequences):有些基因如核蛋白体RNA基因、tRNA基因、组蛋白基因等在DNA分子中可重复出现几十到几千次,约占人细胞DNA含量的30~40%。以rRNA为例,在大肠杆菌中重复频率为7而果蝇中可重复千次。可见真核细胞中重复顺序比原核细胞高得多。

(3)高重复顺序(highlyrepetitive sequences):可重复几百万次。往往是简单的重复顺序,如蟹的T-A-T-A-T-A-T。也有的较长如非洲绿猴DNA是以172个碱基对的顺序为基础重复几万次。高重复顺序一般位于异染色质上,多数不编码蛋白质或RNA,其功能还不太清楚,主要是起间隔作用,可能与调控有关。

在重复顺序中还有一种反转重复顺序(inverted repetitivesequences)。其特点是一段碱基呈现回文结构,即一条单链回折即可形成互补的双链,故称为回文结构(palindromicstructure)或发夹结构(hairpin structure)。这种结构对基因的复制与转录可能具有调节 控制功能。

真核细胞中单拷贝顺序和重复顺序常常是中间隔排列的。不仅如此,在一个基因内部往往被一个或几个额外的顺序分割成若干片段,这种插入到基因内部的顺序称为插入顺序或内含子(intron)。内含子是不编码的顺序,而编码的碱基顺序则称为外显子(exon)。插入顺序是真核细胞DNA最主要的特征。

真核生物由于存在着较多的重复顺序、特殊的插入顺序以及控制区和其它多余顺序,使得DNA总长度往往大于编码的结构基因,因此,实际基因数往往小于DNA分子。

2.原核生物的基因组织原核生物DNA分子较小,基因组织也较简单,一般具有以下特点:

(1)DNA分子绝大部分用于编码蛋白质,不编码部分(又称间隔区)通常包含控制基因表达的顺序。例如,噬菌体фX174中只有5%是非编码区。

(2)功能相关的基因常常串联在一起,并转录在同一个mRNA分子中,称为多顺序反子。这种现象在真核生物中是很少见的。

(3)基因重叠:例如фX174的E基因全部包括在D基因内,B基因则包括在查基因内。这种现象主要发现在病理DNA分子中,可能是由于DNA分子太小又要装入相当量的基因的缘故。

 

Copyright @ 2002-2010 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄Т缂嶅﹪寮诲澶婁紶闁告洦鍓欏▍锝夋⒑缁嬭儻顫﹂柛鏃€鍨垮濠氬Χ閸氥倕婀遍埀顒婄秵閸嬪懘鎮甸幒妤佲拺缂備焦锚缁楁帡鏌ㄩ弴銊ら偗鐎殿喖顭烽弫鎰板川閸屾稒顥堥柛鈹惧亾濡炪倖甯掔€氼參宕戠€n喚鍙撻柛銉e妿閳藉鏌i幘瀵哥疄闁哄矉绻濆畷姗€鏁愰崨顒€顥氶梻鍌欑窔濞佳兠洪妶鍥e亾濮橆偄宓嗛柣娑卞枛椤粓鍩€椤掑嫨鈧礁鈽夊Ο婊勬閸┾偓妞ゆ帊鑳堕々鏌ユ煕閹炬せ鍋撻柛瀣尵閹叉挳宕熼鍌ゆК婵犵數鍋涢惇浼村垂閽樺鏆﹂柟杈剧畱缁犳稒銇勯弬鍨挃闁挎稒绻堝铏圭矙閹稿孩鎷遍梺鑽ゅ暀閸ヤ礁娲弫鍌涙叏閹邦亞鐩庨梻浣瑰濡礁螞閸曨垼鏁佹繝濠傜墛閻撴瑧绱掑☉姗嗗剰濞存粎澧楅幈銊︾節閸愨斂浠㈤悗瑙勬处閸嬪﹤鐣烽悢纰辨晣闁绘ǹ浜粈鍐⒒閸屾瑧顦﹂柟鑺ョ矋閹便劑鎮界粙璺唶闂佽鍨奸悘娑㈡晲婢跺﹦鐤€闂佸搫顦冲▔鏇㈡儓閸曨垱鈷戦柛鎾村絻娴滅偤鏌涢悩鍐插闁宠绉规慨鈧柕鍫濇閹锋椽鏌i悩鍏呰埅闁告柨鑻埢宥夊箛閻楀牏鍘甸梺鍛婂灟閸婃牜鈧熬鎷�. xxmy.com 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢幘鑼槮闁搞劍绻冮妵鍕冀椤愵澀鏉梺閫炲苯澧柛鐔告綑閻g兘濡歌閸嬫挸鈽夊▍顓т簼缁傚秵娼忛妸褏鐦堥梺姹囧灲濞佳冪摥闂備胶枪閿曘倝顢氶鐘愁潟闁圭偓鍓氬ḿ鈺呮煠閸濄儲鏆╅柛妯哄船椤啴濡堕崱妤€顫庢繝娈垮枟閹稿啿鐣峰┑鍡╂僵閺夊牃鏅濋敍婊堟⒑缂佹﹫渚涢柛鐘崇墵瀹曟繈鏁冮崒娑氬幐闁诲繒鍋熼弲顐㈡毄婵$偑浼囬崒婊呯崲闂佸搫鏈惄顖炵嵁濡吋宕夐柣鎴炨缚閳ь剝顕ч—鍐Χ閸℃ḿ鈹涚紓鍌氱С缁舵岸鐛崘鈺冾浄閻庯綆浜滅粣娑欑節閻㈤潧孝闁哥噥鍨堕、鏃堟偄閸忓皷鎷绘繛杈剧秬婵倗娑甸崼鏇熺厱闁挎繂绻掗悾鍨殽閻愯尙绠婚柡浣规崌閺佹捇鏁撻敓锟� 濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻戦妵鍕箻閸楃偟浠肩紒鐐劤椤兘寮婚悢鐓庣鐟滃繒寮ч埀顒傜磽娴g瓔鍤欐俊顐g箞瀵寮撮姀鐘诲敹濠电娀娼уú銈壦囬埡鍛拺闁硅偐鍋涢埀顒佺墪鍗遍柛顐g妇閺€浠嬫煟濡櫣浠涢柡鍡忔櫅閳规垿顢欑拠鎻掔ギ閻庤娲濋~澶岀紦娴犲绀堥柛娆忣槹濞呮捇姊绘担鍛婅础濠⒀勵殔椤灝螣閼测晙绗夊銈嗙墱閸嬬偤鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷10017704闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愰柛鎰紦閻㈠姊婚崒娆戣窗闁告挻鐟х划鏃傗偓闈涙憸娑撳秵銇勯弽顐沪闁绘挶鍎甸弻锝夊即閻愭祴鍋撻崷顓涘亾濮樼偓瀚�