婵☆偓绲鹃悧鐘诲Υ閿燂拷 闂佺ǹ顑呯换鎴﹀蓟閿燂拷 闂佺ǹ绻楀畷鐢稿极閿燂拷 闂佽壈妫勯ˇ鍐茬暤閿燂拷 缂備礁鐬肩换婵堢礊閿燂拷 闂佸搫鍊婚幊鎾存櫠閿燂拷 婵炴垶妫戞俊鍥儓閿燂拷 婵炴垶鎼╅崣鈧€规搫鎷� 闁荤喐鐟ュΛ婵嬨€傞敓锟�

婵炴垶鎼╅崣鈧€规挸鍊垮鍫曞箚娴e啯鑵归柛鏃傚枔閻氭儳鐣靛鑸垫暠闁哄瞼鍠栧畷婊堟晸閿燂拷

濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬儳顭烽弻锝夊箛椤掍焦鍎撻梺鎼炲妼閸婂潡寮诲☉銏╂晝闁挎繂妫涢ˇ銉х磽娴e搫孝缂傚秴锕璇差吋婢跺﹣绱堕梺鍛婃处閸撴瑥鈻嶉敐澶嬧拺缂佸鍎婚~锕傛煕閺冣偓閸ㄥ灝顕f繝姘ч柛姘ュ€曞﹢閬嶅焵椤掑﹦绉甸柛瀣嚇閹敻骞掑Δ浣叉嫼缂傚倷鐒﹂敋缂佹甯¢弻銊╁即閵娿倝鍋楅悗娈垮枛椤兘寮幇鏉垮窛闁稿本绋掗ˉ鍫ユ煕閳规儳浜炬俊鐐€栫敮鎺斺偓姘煎弮瀹曟垹鈧綆鍠氶崣鎾绘煕閵夛絽濡块柍钘夘樀閺岋綁骞樼€靛摜鐤勯梺鍝勭焿缁绘繂鐣烽崼鏇炍ㄩ柕澹倻妫梻鍌欒兌缁垶骞愰崼鏇炵?闁汇垻枪閽冪喖鏌ㄩ悢鍝勑㈢痪鎯у悑閹便劌螣閸濆嫮绉梺鎯х箰闁帮絽顫忓ú顏勭闁兼亽鍎查弳鐘测攽椤旂》宸ユ繝鈧柆宥呯闁靛繒濮Σ鍫熸叏濮楀棗骞栭柛妯虹秺濮婄粯鎷呴崫銉よ檸濡炪倖鍨甸幊姗€銆侀弮鍫熸櫢闁跨噦鎷� 濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬儳顭烽弻锝夊箛椤掍焦鍎撻梺鎼炲妼閸婂潡寮诲☉銏╂晝闁挎繂妫涢ˇ銉х磽娴e搫孝缂傚秴锕璇差吋婢跺﹣绱堕梺鍛婃处閸撴瑥鈻嶉敐澶嬧拺缂佸鍎婚~锕傛煕閺冣偓閸ㄥ灝顕f繝姘ч柛姘ュ€曞﹢閬嶅焵椤掑﹦绉甸柛瀣嚇閹敻骞掑Δ浣叉嫼缂傚倷鐒﹂敋缂佹甯¢弻銊╁即濡 鍋撳┑鍡€垮〒姘e亾婵﹨娅g划娆戞崉閵娧屽敹闂備礁鎲¢懝楣冾敄閸モ晜顫曢柣鎰惈缁狅綁鏌i幇顓烆棆缂佺姵鑹鹃—鍐Χ閸℃衼缂備焦褰冨﹢杈╂閹炬剚娼╅柤鍝ユ暩閸樼敻姊洪崨濠勬噧妞わ缚鍗冲畷鎰板箛閻楀牏鍘靛銈嗘煟閸斿苯煤閵堝鐓侀柛銉e妿缁♀偓闂傚倸鐗婄粙鎾存櫠閵忋倖鐓欓柧蹇e亞婢у灚鎱ㄦ繝鍕笡闁瑰嘲鎳橀幐濠冨緞濡椿妫堝┑锛勫亼閸婃牕煤濡厧鍨濋柟鎹愬吹瀹撲線鐓崶銊р姇闁哄懏鎮傞弻銊╂偆閸屾稑顏� 濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬儳顭烽弻锝夊箛椤掍焦鍎撻梺鎼炲妼閸婂潡寮诲☉銏╂晝闁挎繂妫涢ˇ銉х磽娴e搫孝缂傚秴锕璇差吋婢跺﹣绱堕梺鍛婃处閸撴瑥鈻嶉敐澶嬧拺婵炶尪顕ч獮妤併亜閵娿儻韬€殿喛顕ч濂稿醇椤愶綆鈧洭姊绘担鍛婂暈闁圭ǹ顭烽幆鍕敍閻愬弶妲梺閫炲苯澧柕鍥у楠炴帡骞嬪┑鍥╀壕婵犵數鍋涢崥瀣礉濞嗘挸钃熼柣鏃傚帶瀹告繂鈹戦悩鎻掓殭闁逞屽墯閸旀鍩€椤掑喚娼愭繛鍙夛耿瀹曟繂鈻庤箛鏇熸閻熸粎澧楃敮鈺呭极鐎n喗鐓曟繛鎴濆船楠炴銇勯幘鏉戭嚋濞e洤锕幃娆擃敂閸曘劌浜鹃柡宥庡亝閺嗘粓鏌熼悜妯荤厸闁稿鎸搁~婵嬫偂鎼达紕鐫勯柣搴ゎ潐濞叉﹢宕归崸妤€鏋侀柟鍓х帛閸嬫劗鈧娲栧ú銈夌嵁閹邦兘鏀介柣姗嗗枛閻忚鲸绻涙径瀣创妞ゃ垺鐗犻獮鍥级鐠侯煉绱甸梻渚€娼чˇ顐﹀疾濠婂牊鍋傛繛鎴欏灪閻撴洟鏌嶉挊澶嬵棞妤犵偞顨婇幃妤€顫濋悙顒€顏�
缂備礁顦拌摫闁哄瞼鍠栧鍊熺疀閺囩喓鐛ラ梺鎸庡喕閹凤拷 闂佸憡鍔曢幊鎰帮綖閿燂拷 婵犮垼鍩栭悧婊堬綖閿燂拷 婵犵鈧櫕宸濇い顐嫹 闂佹眹鍨介ˉ鎾伙綖閿燂拷 闂佸憡鐟遍幏锟� 闂佸摜濯撮幏锟� 婵崿宥嗗 闂佹椿浜烽幏锟� 闂佺厧搴滈幏锟� 闂佺ǹ姘﹀▔鏇綖閿燂拷 闂佽壈灏欐慨楣冨磿閿燂拷 濠电偛顦懟顖滅礄閿燂拷 闂佺厧寮剁换鍡涘磿閿燂拷 闂佺厧寮剁粙鏍磻閿燂拷 婵°倗濮伴崝搴綖閿燂拷 缂備椒鑳堕崑鐔哄垝閿燂拷 闂佸憡绋撻崢褔骞嗛敓锟� 闂佹椿鐓堥崰娑㈠磻閿燂拷 闂佽壈灏▔鏇炍i敓锟� 缂傚倸娲ゆ鎼侇敊閿燂拷 濠电姴锕ら鍫f" 閻庣偣鍊涘▔娑㈩敋閿燂拷 闂婎偄娲ら崯鎶藉礈閿燂拷 婵$偛顑囬崰鎾诲几閿燂拷 闂佸湱枪椤︿即骞婇敓锟� 濠电偛鐬肩划顖炲蓟閻旂ǹ绶炵憸宥夊矗閿燂拷
 《生物化学与分子生物学》 > 分子生物学绪论

四、分子生物学发展简史

分子生物学的发展大致可分为三个阶段。

 

(一)准备和酝酿阶段

19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。在这一阶段产生了两点对生命本质的认识上的重大突破。

确定了蛋白质是生命的主要物质基础。

19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、共同酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。在此期间对蛋白质结构的认识也有较大的进步。1902年EmilFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年Sanger和Thompson完成了第一个多肽分子——胰岛素A链和B链的氨基酸全序列分析。由于结晶X-线衍射分析技术的发展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋结构模型。所以在这阶段对蛋白质一级结构和空间结构都有了认识。

确定了生物遗传的物质是DNA。

虽然1868年F.Miescher就发现了核素(nuclein),但是在此后的半个多世纪中并未引起重视。20世纪20-30年代已确认了自然界有DNA和RNA两类核酸,并阐明了核苷酸的组成。由于当时对核苷酸和碱基的定量分析不够精确,得出DNA中A、G、C、T含量是大致相等的结果,因而间长期认为DNA结构只有“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的侯选分子更多的是考虑蛋白质。40年代以后的实验事实使人们对核酸的功能和结构两方面的认识都有了长足的进步。1944年O.T.Avery等证明了肺炎球菌转化因子是DNA;1952年S.Furbery等的X-线衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA是螺旋结构;1948-1953年Chargaff等用新的层析和电泳技术分析组成DNA的碱基和核苷酸量,积累了大量的数据,提出了DNA碱基组成A=T、G=C的Chargaff规则,为碱基酸对的DNA结构认识打下了基础。

 

(二)现代分子生物学的建立和发展阶段

这一阶段是从50年代初到70年代初,以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金。DNA双螺旋发现的最深刻意义在于:确立了核酸作为信息分子的结构基础;提出碱基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其生命中的作用打下了最重要的基础。在些期间的主要进展包括:

遗传信息传递中心法则的建立。

在发现DNA双螺旋结构同时,Watson和Crick就提出DNA复制的可能模型。其后在1956年A.Kornbery首先发现DNA聚合酶;1958年Meselson及Stahl同位素标记和超速离心分离实验为DNA半保留模型提出了证明;1968年Okazaki(冈畸)提出DNA不连续复制模型;1972年证实了DNA复制开始需要RNA作为引物;70年代初获得DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究;这些都逐渐完善了对DNA复制机理的认识。

在研究DNA复制将遗传信息传给子代的同时,提出了RNA在遗传信息传到蛋白质过程中起着中介作用的假说。1958年Weiss及Hurwitz等发现依赖于DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA杂增色证明mRNA与DNA序列互补;逐步阐明了RNA转录合成的机理。

在此同时认识到蛋白质是接受RNA的遗传信息而合成的。50年代初Zamecnik等在形态学和分离的亚细胞组分实验中已发现微粒体(microsome)是细胞内蛋白质合成的部位;1957年Hoagland、Zamecnik及Stephenson等分离出tRNA并对它们在合成蛋白质中转运氨基酸的功能提出了假设;1961年Brenner及Gross等观察了在蛋白质合成过程中mRNA与核糖体的结合;1965年Holley首次测出了酵母丙氨酸tRNA的一级结构;特别是在60年代Nirenberg、Ochoa以及Khorana等几组科学家的共同努力破译了RNA上编码合成蛋白质的遗传密码,随后研究表明这套遗传密码在生物界具有通用性,从而认识了蛋白质翻译合成的基本过程。

上述重要发现共同建立了以中心法则为基础的分子遗传学基本理论体系。1970年Temin和Baltimore又同时从鸡肉瘤病毒颗粒中发现以RNA为模板合成DNA的反转录酶,又进一步补充和完善了遗传信息传递的中心法则。

对蛋白质结构与功能的进一步认识。

1956-58年anfinsen和White根据对酶蛋白的变性和复性实验,提出蛋白质的三维空间结构是由其氨基酸序列来确定的。1958年Ingram证明正常的血红蛋白与镰刀状细胞溶血症病人的血红蛋白之间,亚基的肽链上仅有一个氨基酸残基的差别,使人们对蛋白质一级结构影响功能有了深刻的印象。与此同时,对蛋白质研究的手段也有改进,1969年Weber开始应用SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量;60年代先后分析得血红蛋白、核糖核酸酶A等一批蛋白质的一级结构;1973年氨基酸序列自动测定仪问世。中国科学家在1965年人工合成了牛胰岛素;在1973年用1.8AX-线衍射分析法测定了牛胰岛素的空间结构,为认识蛋白质的结构做出了重要贡献。

 

(三)初步认识生命本质并开始改造生命的深入发展阶段

70年代后,以基因工程技术的出现作为新的里程碑,标志着人类涂认识生命本质并能主动改造生命的新时期开始。其间的重大成就包括:

1 重组DNA技术的建立和发展

分子生物学理论和技术发展的积累使得基因工程技术的出现成为必然。1967-1970年R.Yuan和H.O.Smith等发现的限制性核酸内切酶为基因工程提供了有力的工具;1972年Bery等将SV-40病毒DNA与噬菌体P22DNA在体外重组成功,转化大肠杆菌,使本来在真核功能中合成的蛋白质能在细菌中合成,打破了种属界限;1977年Boyer等首先将人工合成的生长激素释放抑制因子14肽的基因重组入质粒,成功地在大肠杆菌中合成得到这14肽;1978年Itakura(板仓)等使人生长激素191肽在大肠杆菌中表达成功;1979年美国基因技术公司用人工合成的人胰岛素基因重组转入大肠杆菌中合成人胰岛素。至今我国已有人干扰素、人白介素2、人集落刺激因子、重组人乙型肝炎病毒为疫苗、基因工程幼畜腹泻疫苗等多种基因工程药物和疫苗进入生产或临床试用,世界上还有几百种基因工程药物及其它基因工程产品在研制中,成为当今农业和医药业发展的重要方向,将对医学和工农业发展作出新贡献。

转基因动植物和基因剔除植物的成功是基因工程技术发展的结果。1982年Palmiter等将克隆的生长激素基因导入小鼠受精卵细胞核内,培育得到比原小鼠个体大几倍的”巨鼠“,激起了人们创造优良品家畜的热情。我国水生生物研究所将生长激素基因转入鱼受精卵,得到的转基因鱼的生长显著加快、个体增大;转基因猪也正在研制中。用转基因动物还能获取治疗人类疾病的重要蛋白质,导入了凝血因子IX基因的转基因绵羊分泌的乳汁中含有丰富的凝血因子IX,能有效地用于血友病的治疗。在转基因植物方面,1994年能比普通西红柿保鲜时间更长的转基因西红柿投放市场。1996年转基因玉米、转基因大豆相继投入商品生产,美国最早研制得到抗虫棉花,我国科学家将自己发现的蛋白酶抑制剂基因转入棉花获得抗棉铃虫的棉花株。到1996年全世界已有25万公顷土地种植转基因植物。

基因诊断与基因治疗是基因工程在医学领域发展的一个重要方面。1991年美国向一患先天性免疫缺陷病(遗传性腺苷脱氨酶ADA基因缺陷)的女孩体内导入重组的ADA基因。获得成功。我国也在1994年用导入人凝血因子IX基因的方法成功治疗了乙型血友病的患者。在我国用作基因诊断的试剂盒已有近百种之多。基因诊断和基因治疗正在发展之中。

这时期基因工程的迅速进步得益于许多分子生物学新技术的不断涌现。包括:核酸的化学合成从手工发展到全自动合成。1975-1977年Sanger、Maxam和Gilbert先后发明了三种DNA序列的快速测定法;90年代全自动核酸序列测定仪的问世;1985年Cetus公司Mullis等发明的聚合酶链式反应(PCR)的特定核酸序列扩增技术,更以其高灵敏度和特异性被广泛应用、对分子生物学的发展起到重大的推动作用。

2 基因组研究的发展

目前分子生物学已经从研究单个基因发展到研究生物整个基因组的结构与功能。1977年Sanger测定了ΦX174-DNA全部5375个核苷酸的序列;1978年fiers等测出SV-40DNA全部5224对碱基序列;80年代λ噬菌体DNA合部48502碱基对的序列全部测出;一些小的病毒包括乙型肝炎病毒、艾滋病毒等基因组的全序列也陆续被测定;196提底许多科学家共同努力测出了大肠杆菌基因组DNA的全序列长4×106碱基对。测定整个生物基因组核酸的全序列无疑对理解这一生物的生命信息及其功能有极大的意义。1990年人类基因组计划(HumanGenomeProjiect)开始实施,这是生命科学领域有史以来全球性最庞大的研究计划,将在2005年时测定出人基因组全部DNA3×109碱基对的序列、确定人类约5-10万个基因的一级结构,这将使人类能够更好掌握自己的命运。

3 单克隆抗体及基因工程抗体的建立和发展

1975年Kohler和Milstein首次用B淋巴细胞杂交瘤技术制备出单克隆以来,人们利用这一细胞工程技术研制出多种单克隆抗体,为许多疾病的诊断和治疗提供有有效的手段。80年代以后随着基因工程抗体技术相继出现的单域抗体、单链抗体、嵌合抗体、重构抗体、双功能抗体等为广泛和有效的应用单克隆抗体提供了广阔的前景。

4 基因表达调控机理

分子遗传学基本理论建立者Jacob和Monod最早提出的操纵元学说打开了人类认识基因表达调控的窗口,在分子遗传学基本理论建立的60年代,人们主要认识原核生物基因表达调控的一些规律,70年代以后才逐渐认识了真核基因组结构和调控的复杂性。1977年最先发现猴SV40病毒和腺病毒中编码蛋白质的基因序列是不连续的,这种基因内部的间隔区(内含子)在真核基因组中是普遍存在的,揭开了认识真核基因组结构和调控的序幕。1981年Cech等发现四膜虫rRNA的自我剪接,从而发现核(ribozyme)。80-90年代,使人们逐步认识到真核基因的顺式调控元件与反式转录因子、参与蛋白南间的分子识别与相互作用是基因表达调控根本所在。

5 细胞信号转导机理研究成为新的前沿领域

细胞信号转导机理的研究可以追述至50年代。Sutherland1957年发现cDNA、1965年提出第二信使学说,是人们认识受体介导和细胞信号转导的第一个里程碑。1977年Ross等用重组实验证实G蛋白的存在和功能,将G蛋白与腺苷酸环化酶的作用相联系起来,深化了对G蛋白偶联信号转导途径的认识。70年代中期以后,癌基因和抑癌基因的发现、蛋白酪氨酸激酶的发现及其结构与功能的深入研究、各种受体蛋白基历的克隆和结构功能的探索等,使近10年来细胞信号转导的研究更有了长足的进步。目前,对于某些细胞中的一些信号转导途径已经有了初步的认识,尤其是在免疫活性细胞对抗原的识别及其活化信号的传递途径方面和细胞增殖控制方面等形成了一些基本的概念,当然要达到最终目标还需相当长时间的努力。

以上简要介绍了分子生物学的发展过程,可以看到在近半个世纪中它是生命科学范围发展最为迅速的一个前沿领域,推动着整个生命科学的发展。至今分子生物学仍在迅速发展中,新成果、新技术不断涌现,这也从另一方面说明分子生物学发展还处在初级阶段。分子生物学已建立的基本规律给人们认识生命的本质拽出了光明的前景,分子生物学的历史还短,积累的资料还不够,例如:在地球上千姿百态的生物携带庞大的生命信息,迄今人类所了解的只是极少的一部位,还未认识核酸、蛋白质组成生命的许多基本规律;又如即使到2005年我们已经获得人类基因组DNa 3×109bp的全序列,确定了人的5-10万个基因的一级结构,但是要彻底搞清楚这些基因产物的功能、调控、基因间的相互关系和协调,要理解80%以上不为蛋白质编码的序列的作用等等,都还要经历漫长的研究道路。可以说分子生物学的发展前景光辉灿烂,道路还会艰难曲折。

 

Copyright @ 2002-2010 婵炴垶鎼╅崢鑲╀焊閻楀牏鈻旀い鎾偓宕囥偐缂備礁顦拌摫闁哄瞼鍠撶槐鏃堟晸閿燂拷. xxmy.com 闂佺粯顨呴悧濠傖缚閸儱绠ラ柍褜鍓熷鐢告晸閿燂拷 濠电姭鍋撴俊銈囨嚕P婵犮垼顔愰幏锟�10017704闂佸憡鐟遍幏锟�